Oktober 30, 2011

Teori Waktu Dari Einstein

Pernah merasa waktu berjalan cepat atau terasa begitu lambat? Seperti saat waktu berlalu begitu cepat ketika Anda sedang bersama teman- teman atau saat waktu terasa begitu lambat ketika Anda terjebak dalam hujan. Tapi Anda tidak bisa mempercepat atau memperlambat waktu kan?

Waktu selalu berjalan dalam kecepatan yang konstan. Einstein tidak berpikir demikian. Ide dia adalah semakin kita mendekati kecepatan cahaya, semakin lambat waktunya relatif dibandingkan kondisi orang yang tidak bergerak. Dia menyebutnya melambatnya waktu karena gerakan. Tidak mungkin, kamu bilang? Oke, bayangkan ini. Kamu berdiri di bumi, memegang jam. Teman baikmu ada di dalam roket dengan kecepatan 250.000 km/detik. Temanmu juga memegang sebuah jam. Kalau kamu bisa melihat jam yang dibawa temanmu, kamu akan melihat bahwa jam itu tampak berjalan lebih lambat daripada jam kamu. Sebaliknya temanmu akan merasa jam yang ia bawa berjalan biasa2 aja (tidak melambat), dia pikir malah jam kamu yang tampak berjalan lebih lambat.

Masih bingung? Ingat, Einstein butuh 8 tahun untuk menemukan hal ini. Dan dia dianggap jenius. Einstein memberikan contoh untuk menunjukan efek perlambatan waktu yang dia sebut “paradoks kembar”. Seperti permainan penjelajah waktu. Mari kita mencobanya dengan menganggap ada 2 orang kembar bernama Eyne dan Stine. Dua2nya kita anggap berumur 10 tahun. Eyne memutuskan dia sudah bosan di bumi dan perlu liburan. Dia mendengar bahwa ada hal yang menarik di sistem bintang Alpha3, yang berjarak 25 tahun cahaya. Stine yang harus mengikuti ujian matematika minggu depan, harus tinggal di rumah untuk belajar. Jadi Eyne berangkat sendiri. Ingin sampai secepatnya di sana, dia memutuskan untuk berjalan dengan kecepatan 99,99% kecepatan cahaya. Perjalanan ke sistem bintang itu bolak balik membutuhkan waktu 50 tahun. Apa yang terjadi ketika Eyne kembali? Stine sudah 60 tahun, tapi Eyen masih berumur 10 ½ tahun. Bagaimana mungkin? Eyne sudah pergi selama 50 tahun tapi hanya bertambah umur ½ tahun! Hey, apakah Eyne baru saja menemukan mata air awet muda!

Ide Einstein tentang waktu yang melambat tampak benar dan semua adalah teori, tapi bagaimana kamu tahu kalau dia benar? Salah satu cara adalah dengan naik roket dan memacu roket itu mendekati kecepatan cahaya. Tapi sampai saat ini, kita belum bisa melakukannya. Tapi ada satu cara untuk mengetestnya. Bagaimana kita tahu kalau Einstein tidak salah? Percobaan ini mungkin bisa memberikan penjelasan atas idenya. Jam atom adalah jam yang sangat akurat, bisa mengukur satuan waktu yang sangat kecil. Sepersejutaan detik bisa diukur. Di tahun 1971, ilmuwan menggunakan jam ini untuk mengetest ide Einstein. Satu jam atom diset di atas bumi, dan satu lagi dibawa keliling dunia menggunakan pesawat jet dengan kecepatan 966 km/jam. Pada awalnya kedua jam itu diset agar menunjukan waktu yang sama. Apa yang terjadi ketika jam dibawa mengelilingi dunia dan kemudian kembali ke titik di tempat jam satunya lagi berada? Sesuai perkiraan Einstein, kedua jam itu sudah tidak menunjukan waktu yang sama. Jam yang sudah dibawa keliling dunia, menunjukan keterlambatan waktu seperberapa juta detik!

Kamu mungkin bertanya kenapa kok bedanya begitu kecil? Pertanyaan yang bagus! Yah, 966 km/jam cukup cepat, tapi masih belum mendekati kecepatan cahaya. Untuk melihat perbedaan waktu yang signifikan, kamu harus melaju dengan sangat lebih cepat.

sumber

Pemanfaatan Uranium Sebagai Bahan Bakar

Uranium adalah mineral yang memancarkan radiasi nuklir atau bersifat radioaktif, digunakan dalam berbagai bidang salah satunya adalah sebagai bahan bakar nuklir. Uranium merupakan suatu unsur kimia dalam tabel periodik yang memiliki lambang U dan nomor atom 92. Sebuah logam berat, beracun, berwarna putih keperakan dan radioaktif alami, uranium termasuk ke seri aktinida (actinide series). Uranium biasanya terdapat dalam jumlah kecil di bebatuan, tanah, air, tumbuhan, dan hewan (termasuk manusia).
Uranium memiliki 3 Isotop :
- U234 kadar sangat kecil
- U235 kadar 0,715 = 0,7 %
- U238 kadar 99,285 = 99,3%
Isotop U235 digunakan sebagai bahan bakar reaktor nuklir dan senjata nuklir.

Uranium - From Ore to Reactor Fuel

Uranium memiliki sifat fisik yang khas :
- Ditemukan di alam dalam bentuk U3O atau UO berwarna hijau kekuning-kuningan dan coklat tua.
- Bila disinari cahaya ultra ungu, uranium akan mengeluarkan cahaya fluoresensi yang sangat indah

Dalam fisika nuklir, sebuah reaksi nuklir adalah sebuah proses di mana dua nuklei atau partikel nuklir bertubrukan, untuk memproduksi hasil yang berbeda dari produk awal. Pada prinsipnya sebuah reaksi dapat melibatkan lebih dari dua partikel yang bertubrukan, tetapi kejadian tersebut sangat jarang. Bila partikel-partikel tersebut bertabrakan dan berpisah tanpa berubah (kecuali mungkin dalam level energi), proses ini disebut tabrakan dan bukan sebuah reaksi.
Dikenal dua reaksi nuklir, yaitu reaksi fusi nuklir dan reaksi fisi nuklir. Reaksi fusi nuklir adalah reaksi peleburan dua atau lebih inti atom menjadi atom baru dan menghasilkan energi, juga dikenal sebagai reaksi yang bersih. Reaksi fisi nuklir adalah reaksi pembelahan inti atom akibat tubrukan inti atom lainnya, dan menghasilkan energi dan atom baru yang bermassa lebih kecil, serta radiasi elektromagnetik. Reaksi fusi juga menghasilkan radiasi sinar alfa, beta dan gamma yang sangat berbahaya bagi manusia.
Contoh reaksi fusi nuklir adalah reaksi yang terjadi di hampir semua inti bintang di alam semesta. Senjata bom hidrogen juga memanfaatkan prinsip reaksi fusi tak terkendali. Contoh reaksi fisi adalah ledakan senjata nuklir dan pembangkit listrik tenaga nuklir.
A open-pit uranium mine in Australia's Kakadu National Park.

Unsur yang sering digunakan dalam reaksi fisi nuklir adalah Plutonium dan Uranium (terutama Plutonium-239, Uranium-235), sedangkan dalam reaksi fusi nuklir adalah Lithium dan Hidrogen (terutama Lithium-6, Deuterium, Tritium).

Sumber

Penelitian Kandungan Gas di Daerah Pasuruan

Dewasa ini eksplorasi sumber energi khususnya minyak bumi dan gas berkembang sangat pesat sejalan dengan pemenuhan kebutuhan hidup manusia yang semakin mendesak. Survey seismik pada seismik pantul dangkal saluran tunggal mengungkapkan keadaan bawah permukaan dasar laut dengan hasilnya yang sangat baik untuk eksplorasi gas biogenik, yaitu memberikan informasi mengenai struktur geometri bawah permukaan dasar laut.
Morfologi dasar laut daerah penyelidikan relatif landai dengan kedalaman laut berkisar antara 2 hingga 25 meter. Kedalaman laut bertambah ke arah bagian timur laut dan mendangkal ke arah bagian barat dan barat daya. Perkiraan perhitungan secara kasar bahwa potensi terukur gas dalam sedimen di Perairan Pasuruan pada sedimen runtunan 1 yang berumur Holosen adalah sebesar 168.820.000 m . Nilai ini berdasarkan luas daerah penyebaran dari sedimen bermuatan gas.

Pengolahan data Seismik Pantul Dangkal

Hasil rekaman seismik pantul dangkal merupakan penampang waktu (Time Section) yang menggambarkan bidang-bidang pantul (reflektor) dari permukaan air laut hingga bawah dasar laut pada kedalaman tertentu.
Hasil analisa laboratorium contoh batuan yang diambil dari dasar laut di perairan Pasuruan dan sekitarnya sangat berguna sekali untuk memperkirakan kecepatan rambat gelombang seismik (seismic velocity) pada sekuen paling atas dalam satuan meter yang akan di tuangkan dalam peta kedalaman sequen (peta Isopah). Panjang lintasan yang telah dilakukan untuk perekaman kondisi bawah dasar laut dengan metoda seismik pantul dangkal ini adalah sepanjang 150 kilometer dengan lintasan utama berarah utara- selatan hampir tegak lurus pantai Pasuruan.
Dalam penelitian ini metoda seismik menggunakan pemancar energi Uniboom yang mempunyai resolusi tinggi dengan kemampuan identifikasi runtunan-runtunan sedimen hingga sekitar 50 meter di bawah dasar laut. Semua posisi ditentukan menggunakan Sistem Satelit Navigasi Terpadu dengan perangkat Magelen M1000/Garmin Survey II yang dilengkapi paket piranti lunak modifikasi PPGL sehingga didapatkan akurasi ketelitiam posisi kurang dari 20 meter. Akusisi atau pengambilan data di lapangan menggunakan peta kerja sekala 1 : 50.000. Perhitungan ketebalan sequen yaitu dengan mengalikan ketebalan sequen dalam satuan waktu (detik) dengan kecepatan rambat gelombang seismik yang diperkirakan dalam satuan meter perdetik (m/sec). Untuk perairan Jawa timur yang tidak memiliki variasi dalam jenis batuannya, maka asumsi kecepatan rambat sinyal akustik pada sedimen lumpur dan pasir (Unit IA) adalah 1600 m/sec, sekuen II (Unit IB) 1650 m/sec, sekuen III (unit IC) 1700 m/sec, dan sekuen IV (unit ID) 1750 m/sec.
Data-data yang perlu diketahui dalam perhitungan kedalaman dan ketebalan adalah :
a. Waktu tempuh gelombang pantul
b. Penentuan skala vertical penampang seismik

Waktu Tempuh Gelombang Pantul

Waktu tempuh gelombang pantul bolak-balik diperoleh dengan cara mengukur jarak vertikal tiap-tiap perlapisan dari hasil rekaman analog seismik. Tahap pertama adalah menarik batas-batas tiap lapisan. Setelah batas perlapisan diketahui maka diukur pula lebar satu sapuan (sweep). Seperti diketahui bahwa penampang seismik yang diperoleh waktu tempuh two way time-nya adalah 250 milidetik. Dari rekaman seismik hasil yang diperoleh merupakan penampang waktu (Time Section). Penampang waktu tersebut menggambarkan waktu tempuh gelombang seismik bolak-balik. Untuk mendapatkan waktu tempuh gelombang bolak-balik, perlu diketahui waktu rata-rata picu (firing rate). Sebagai contoh pada rekaman digunakan firing rate ¼ detik / Sweep. Dengan mengukur jarak vertikal (secara grafis) masing-masing perlapisan, maka waktu tempuh dari permukaan laut hingga batas-batas perlapisan (bidang pantul) dapat diketahui.
Berikut ini akan diberikan cara menentukan waktu tempuh gelombang seismik bolak-balik pada lintasan 1 sweep = 0,25 detik = 250 mili detik. Satu sweep terdiri dari 10 kolom dimana tiap kolom 33 mm. Oleh karena itu lebar 10 kolom = 330 mm (telah diproses) .Dengan mengukur dari permukaan laut hingga mencapai dasar laut, misalkan didapat = 5 mm, Waktu tempuh gelombang bolak-balik (TWT) dari permukaan hingga dasar laut adalah 250 milidetik/330mm x 5 mm = 3,78 mili detik.

Penentuan Skala Vertikal Penampang Seismik

Panjang garis seismic section adalah 250 mili detik (TWT) , karena waktu tempuh gelombang bolak-balik TWT (Two Way Time) sehingga waktu tempuh itu dibagi dua yaitu 250/2 = 125 mili detik.  Karena ada 10 kolom maka125/10 = 12,5 milidetik dengan perbandingan dari panjang tiap marking dan semua kolom, maka 12,5/250 = 0,05 mili detik karena cepat rambat gelombang seismik dalam air adalah 1500 meter / detik, maka 12,5/250 x 1500 = 75 meter dengan Sweep rate ¼ detik / Sweep maka 12,5/250 x 1500 x 0,25 = 18,75 meter karena sapuan ¼ detik / Sweep pada setiap ½ detik ledakan, maka (12,5/250 x 1500 x 0,25)x 2 = 37,5 meter.
Sehingga Skala vertikal untuk kedalaman air adalah 37,5 m pada penampang seismik. Karena dibagi menjadi 3 kolom maka tiap kolom 12,5 meter. Dengan perbandingan (33/ 330 x 1500 x 0,25)/3 = 12,5. Penentuan kedalaman air dapat juga dikoreksi terhadap MSL (Mean Sea Level) dari pengamatan pasang surut laut. Untuk menentukan skala vertikal ketebalan sedimen, maka asumsi kecepatan rambat sinyal akustik diambil 1600 meter / detik. Sehingga dengan cara yang sama, (12,5/250 x 1600 x 0,25)x 2 = 40 meter. Atau (33/330 x 1600 x 0,25)/3 = 13,3 meter.